Tuesday, May 28, 2024

The Rise of Automotive Hacking: How to Secure Your Vehicles Against Hacking

Though we can’t see it, the world brims with more technology than ever. These days, devices with internet connectivity live within the ever-growing Internet of Things (IoT)—a worldwide “web” where wireless communication and information technology work together. Since the early 2000s, smart cars have appeared within the IoT, sporting more comfortable, efficient, and safer rides. Despite their advancements, they remain constant targets for cyberattacks and hacking.

What is Automotive Hacking?

Functionally, automotive hacking is like traditional cyberattacks; the actor breaks into the system, gaining abilities to change files, open doors to other networks, or harvest unused resources. Automotive hacking occurs similarly, but the target is a car rather than a home computer or business database.

The target is the car’s electronic control unit (ECU), which connects to many communication channels and networks. The ECU is also intimately related to the car itself; hackers can do anything with this access, from changing the radio to steering takeovers. Some may outright steal the vehicle.

What are the Risks of Automotive Hacking?

A stolen car is a problem, but hackers aren’t typically interested in committing glaring crime sprees. They’re more concerned with insidious results. For example, a hacker could break into a car’s ECU to jump to another network. Then, they could access databases or servers as they please. Before jumping to a better vantage point, they could unleash a long list of problems for the car owner:

  • Broken or destroyed cybersecurity functions: making the car even more vulnerable.
  • Programmed behaviors: some may remove alarms and notifications from activation.
  • Data and personal information theft: opening owners to financial issues and fraud.
  • Forced temperature conditions: causing cars to shut down in high-temp states.

How Hackers Can Gain Access to Vehicles?

A smart car is under threat from many angles. Depending on the end goal of the assailant, the attack may take various forms, from over the internet to physical interaction with the car. Those wanting to access the ECU to jump away are less likely to come in contact with the vehicle. The hacker’s available technology limits their access gateways:

Forced Access

Hackers can break into an ECU by plugging an infected USB data port into the car. Like other computers, cars can suffer from malware and viruses, but their consequences may be more deadly. For this reason, owners of modern cars must be vigilant of what and who is plugging things into their cars.

Extended Key Fob Range

Although fobs are a common feature of many cars, they are also a significant system weakness in smart cars. The more utility the car fob has, the more access the hacker could gain by breaking into it. A hacker’s access lets them start or stop the car, open the windows and doors, and even trigger alarms.

Smartphone Access

Hackers can get smartphone access in many ways; regarding vehicles, hackers can attack from the internet, over applications, or through a network. A corrupt smartphone exposes more than personal and financial information; it also opens any connected devices and networks to the threat. Connected automotive applications are another common access point for skilled hackers.

Telematics

Another weakness is the technology used to gather and analyze data from fleet vehicles. Telematic tech allows for seamless information interaction from any location but is readily exploitable for hackers. Those with a successful attack have network access, organization data, and personal client or consumer information.

How to Prevent Automotive Hacking?

Smart cars, despite being giant, rolling targets, have come a long way since their inception. Car manufacturers invest in more cybersecurity every year. The manufacturers and application developers are only part of the solution, however. Car owners must take proactive steps to help defend their property and network.

Manufacturer-Endorsed Software Only

One can rarely trust third-party applications. Devices that connect to them (or accept their Terms and Conditions) can quickly become infected with problems. Only use reputable applications; Google and Apple Maps are good examples, though cautious consumers may want to read their policies before agreeing.

Smart cars and internet connectivity will further entwine in the coming decades. As fast as cybersecurity tech advances, the faster hackers evolve their attacks. Smart cars and everything they interact with are at risk of falling victim to cyber threats. Taking necessary precautions on time can protect against identity theft and prevent becoming a victim of cyberattacks.

Up-to-Date Software

Gone are the days when consumers could ignore their system updates for weeks (or years). These days, software updates are the most significant protection individuals have against cyber threats. Car owners should check their systems regularly for compliance.

Password Protect

Like cellphones, many smart cars have “About” information that may provide access to the ECU. The only way to prevent its use is by routinely monitoring the accounts and properly configuring access. Administration passwords are not permanent solutions.

Internet Access via VPN

Virtual private networks (VPNs) mask a device’s IP address with an alternative. It allows consumers to have another layer of protection between themselves and the internet. VPNs are crucial to securing vehicle gadgets, engines, and internal components.

Strictly Need-Basis GPS

The Global Positioning System (GPS) of a modern car is one of the car’s most significant weaknesses. GPS opens the system to transmissions, which can lead to direct attacks. Hackers could also target their internal connections if the GPS works through a third party.

Install a Firewall

Removing the connectivity from a modern car is impossible. Consumers must protect the connection to prevent successful cyberattacks. Installing the proper firewall will do more than alert the owner to threats; it will also restrict communications from all unauthorized parties. Firewalls are considered a necessary line of defense.

Website

Latest articles

Researchers Exploited Nexus Repository Using Directory Traversal Vulnerability

Hackers target and exploit GitHub repositories for a multitude of reasons and illicit purposes.The...

DDNS Service In Fortinet Or QNAP Embedded Devices Exposes Sensitive Data, Researchers Warn

Hackers employ DNS for various purposes like redirecting traffic to enable man-in-the-middle attacks, infecting...

PoC Exploit Released For macOS Privilege Escalation Vulnerability

A new vulnerability has been discovered in macOS Sonoma that is associated with privilege...

CatDDoS Exploiting 80+ Vulnerabilities, Attacking 300+ Targets Daily

Malicious traffic floods targeted systems, servers, or networks in Distributed Denial of Service (DDoS)...

GNOME Remote Desktop Vulnerability Let Attackers Read Login Credentials

GNOME desktop manager was equipped with a new feature which allowed remote users to...

Kesakode: A Remote Hash Lookup Service To Identify Malware Samples

Today marks a significant milestone for Malcat users with the release of version 0.9.6,...

Cisco Firepower Vulnerability Let Attackers Launch SQL Injection Attacks

 A critical vulnerability has been identified in Cisco Firepower Management Center (FMC) Software's web-based...
Balaji
Balaji
BALAJI is an Ex-Security Researcher (Threat Research Labs) at Comodo Cybersecurity. Editor-in-Chief & Co-Founder - Cyber Security News & GBHackers On Security.

Free Webinar

Live API Attack Simulation

94% of organizations experience security problems in production APIs, and one in five suffers a data breach. As a result, cyber-attacks on APIs increased from 35% in 2022 to 46% in 2023, and this trend continues to rise.
Key takeaways include:

  • An exploit of OWASP API Top 10 vulnerability
  • A brute force ATO (Account Takeover) attack on API
  • A DDoS attack on an API
  • Positive security model automation to prevent API attacks

Related Articles