Friday, April 11, 2025
Homecyber securityZENHAMMER - First Rowhammer Attack Impacting Zen-based AMD Platforms

ZENHAMMER – First Rowhammer Attack Impacting Zen-based AMD Platforms

Published on

SIEM as a Service

Follow Us on Google News

Despite AMD’s growing market share with Zen CPUs, Rowhammer attacks were absent due to challenges in reverse engineering DRAM addressing, synchronizing with refresh commands, and achieving sufficient row activation throughput. 

Researchers addressed these through ZENHAMMER, the first Rowhammer attack on recent AMD CPUs.

ZENHAMMER reverse engineers non-linear addressing uses crafted access patterns for synchronization, and schedules instructions carefully to increase throughput while bypassing mitigations. 

- Advertisement - Google News

Evaluations demonstrated ZENHAMMER finding bit flips on 7 out of 10 DDR4 devices on Zen 2/3 CPUs, enabling Rowhammer exploitation on current AMD platforms.

Besides this, it also triggered the first Rowhammer bit flips on a DDR5 device.

ZENHAMMER – First Rowhammer Attack

There have been cases of recent Rowhammer attacks that were used to bypass in-DRAM mitigations on Intel CPUs by exploiting particular architectural details, though such attacks have not been recorded against modern AMD Zen microarchitecture CPUs.

 However, several crucial aspects including physical-to-DRAM address mapping, DRAM command observability, and memory instructions behavior on AMD platforms through extensive experiments were discovered. 

Researchers used this information to design ZENHAMMER, it’s the first-ever successful Rowhammer attack against AMD Zen CPUs.

The goal of the researchers was to trigger bit flips on AMD Zen platforms using DDR4 memory, allowing comparison with well-studied Intel systems. 

A crucial requirement for effective Rowhammer is knowledge of the DRAM address mapping from physical addresses to DRAM locations, enabling precise attacker row selection. 

Since AMD and Intel memory controllers use different mappings, determining the AMD mapping posed the researchers’ first key challenge in constructing a Rowhammer attack on these platforms.

While Intel systems have all DRAM-adding bits within the lower 21 bits, AMD Zen systems utilize up to 34 bits, making exploitation challenging without knowing these bits. 

Experts describe a technique combining the bank conflict side channel with reverse-engineered DRAM mappings to detect consecutive same-bank rows crucial for Rowhammer. 

By coloring 2MB transparent huge pages (THPs) based on bank conflicts and using known address functions on the lower 21 bits, experts can identify same-bank rows within each THP color. 

On a Zen 3 system, THP coloring takes around 39 seconds per attack, while detecting same-bank rows is a one-time 18ms cost per memory configuration.

The evaluation results reveal how well ZENHAMMER’s optimizations for causing bit flips on AMD Zen 2 and Zen 3 processors work as compared to the earlier methods. 

By refining hammering instruction sequences and fence scheduling policies, ZENHAMMER dramatically raised the number of devices showing bit flips and the patterns that triggered them, particularly in the case of Zen 3 where no bit flips were reported before. 

In comparison with Intel Coffee Lake on some devices, ZENHAMMER was less effective though its optimizations have shown themselves more powerful for some DIMMs even exceeding Coffee Lake’s best-performance bit flip counts. 

These findings indicate that successful Rowhammer attacks require platform-specific optimizations beyond just increasing activation rates.

Stay updated on Cybersecurity news, Whitepapers, and Infographics. Follow us on LinkedIn & Twitter.

Tushar Subhra
Tushar Subhra
Tushar is a Cyber security content editor with a passion for creating captivating and informative content. With years of experience under his belt in Cyber Security, he is covering Cyber Security News, technology and other news.

Latest articles

TROX Stealer Harvests Sensitive Data Including Stored Credit Cards and Browser Credentials

Cybersecurity experts at Sublime have uncovered a complex malware campaign revolving around TROX Stealer,...

Chinese eCrime Group Targets Users in 120+ Countries to Steal Banking Credentials

Smishing Triad, a Chinese eCrime group, has launched an extensive operation targeting users across...

Calix Devices Vulnerable to Pre-Auth RCE on Port 6998, Root Access Possible

A severe security flaw enabling unauthenticated remote code execution (RCE) with root privileges has...

Microsoft Boosts Exchange and SharePoint Security with Updated Antimalware Scan

Microsoft has fortified its Exchange Server and SharePoint Server security by integrating advanced Antimalware...

Resilience at Scale

Why Application Security is Non-Negotiable

The resilience of your digital infrastructure directly impacts your ability to scale. And yet, application security remains a critical weak link for most organizations.

Application Security is no longer just a defensive play—it’s the cornerstone of cyber resilience and sustainable growth. In this webinar, Karthik Krishnamoorthy (CTO of Indusface) and Phani Deepak Akella (VP of Marketing – Indusface), will share how AI-powered application security can help organizations build resilience by

Discussion points


Protecting at internet scale using AI and behavioral-based DDoS & bot mitigation.
Autonomously discovering external assets and remediating vulnerabilities within 72 hours, enabling secure, confident scaling.
Ensuring 100% application availability through platforms architected for failure resilience.
Eliminating silos with real-time correlation between attack surface and active threats for rapid, accurate mitigation

More like this

TROX Stealer Harvests Sensitive Data Including Stored Credit Cards and Browser Credentials

Cybersecurity experts at Sublime have uncovered a complex malware campaign revolving around TROX Stealer,...

Chinese eCrime Group Targets Users in 120+ Countries to Steal Banking Credentials

Smishing Triad, a Chinese eCrime group, has launched an extensive operation targeting users across...

Calix Devices Vulnerable to Pre-Auth RCE on Port 6998, Root Access Possible

A severe security flaw enabling unauthenticated remote code execution (RCE) with root privileges has...