Thursday, December 19, 2024
HomeCyber Security NewsPoisoned AI Coding, Assistant Tools Opens Application to Hack Attack

Poisoned AI Coding, Assistant Tools Opens Application to Hack Attack

Published on

SIEM as a Service

AI (Artificial Intelligence) has significantly revolutionized software engineering with several advanced AI tools like ChatGPT and GitHub Copilot, which help boost developers’ efficiency. 

Besides this, two types of AI-powered coding assistant tools emerged in recent times, and here we have mentioned them:-

  • CODE COMPLETION Tool 
  • CODE GENERATION Tool

Cybersecurity researchers Sanghak Oh, Kiho Lee, Seonhye Park, Doowon Kim, Hyoungshick Kim from the following universities recently identified that poisoned AI coding assistant tools open the application to hack attack:-

- Advertisement - SIEM as a Service
  • Department of Electrical and Computer Engineering, Sungkyunkwan University, Republic of Korea
  • Department of Electrical Engineering and Computer Science, University of Tennessee, USA

Poisoned AI Coding Assistant

AI coding assistants are transforming software engineering, but they are vulnerable to poisoning attacks. Attackers inject malicious code snippets into training data, leading to insecure suggestions. 

This poses real-world risks, as researchers’ study with 238 participants and 30 professional developers reveals. The survey shows widespread tool adoption, but developers may underestimate poisoning risks. 

In-lab studies confirm that poisoned tools can influence developers to include insecure code, highlighting the urgency for education and enhanced coding practices in the AI-powered coding landscape.

Code and model poisoning attacks (Source - Arxiv)
Code and model poisoning attacks (Source – Arxiv)

Attackers aim to deceive developers through generic backdoor poisoning attacks on code-suggestion deep learning models. This method manipulates models to suggest malicious code without degrading overall performance and is hard to detect. 

Attackers leverage access to the model or its dataset, often sourced from open repositories like GitHub, and here, the detection is challenging due to model complexity. 

Mitigation strategies include:-

  • Improved code review
  • Secure coding practices
  • Fuzzing

Static analysis tools can help detect poisoned samples, but attackers may craft stealthy versions. After the tasks, participants had an exit interview with two sections:- 

  • 1. Demographic and security knowledge assessment, including a quiz and confidence ratings. 
  • 2. Follow-up questions explored intentions, rationale, and awareness of vulnerabilities and security threats, such as poisoning attacks in AI-powered coding assistants.

Recommendations

Here below we have mentioned all the recommendations:-

  • Developer’s Perspective.
  • Software Companies’ Perspective.
  • Security Researchers’ Perspective.
  • User Studies with AI-Powered Coding Tools.
Tushar Subhra
Tushar Subhra
Tushar is a Cyber security content editor with a passion for creating captivating and informative content. With years of experience under his belt in Cyber Security, he is covering Cyber Security News, technology and other news.

Latest articles

Next.js Vulnerability Let Attackers Bypass Authentication

A high-severity vulnerability has been discovered in the popular web framework, Next.js, which allows...

CISA Issues Secure Practices for Cloud Services To Strengthen U.S Federal Agencies

In a decisive move to bolster cloud security, the Cybersecurity and Infrastructure Security Agency...

Fortinet Critical Vulnerabilitiy Let Attackers Inject Commands Remotely

Fortinet, a global leader in cybersecurity solutions, has issued an urgent security advisory addressing...

Critical Chrome Vulnerabilities Lets Attackers Execute Arbitrary Code Remotely

Google has released a new security update on the Stable channel, bringing Chrome to...

API Security Webinar

72 Hours to Audit-Ready API Security

APIs present a unique challenge in this landscape, as risk assessment and mitigation are often hindered by incomplete API inventories and insufficient documentation.

Join Vivek Gopalan, VP of Products at Indusface, in this insightful webinar as he unveils a practical framework for discovering, assessing, and addressing open API vulnerabilities within just 72 hours.

Discussion points

API Discovery: Techniques to identify and map your public APIs comprehensively.
Vulnerability Scanning: Best practices for API vulnerability analysis and penetration testing.
Clean Reporting: Steps to generate a clean, audit-ready vulnerability report within 72 hours.

More like this

Next.js Vulnerability Let Attackers Bypass Authentication

A high-severity vulnerability has been discovered in the popular web framework, Next.js, which allows...

CISA Issues Secure Practices for Cloud Services To Strengthen U.S Federal Agencies

In a decisive move to bolster cloud security, the Cybersecurity and Infrastructure Security Agency...

Fortinet Critical Vulnerabilitiy Let Attackers Inject Commands Remotely

Fortinet, a global leader in cybersecurity solutions, has issued an urgent security advisory addressing...