Sunday, January 12, 2025
HomeArtificial IntelligenceResearchers Propose An Invisible Backdoor Attack Dubbed DEBA

Researchers Propose An Invisible Backdoor Attack Dubbed DEBA

Published on

As deep neural networks (DNNs) become more prevalent, concerns over their security against backdoor attacks that implant hidden malicious functionalities have grown. 

Cybersecurity researchers (Wenmin Chen and Xiaowei Xu) recently proposed DEBA, an invisible backdoor attack leveraging singular value decomposition (SVD) to embed imperceptible triggers during model training, causing predefined malicious behaviors.

DEBA replaces minor visual features of trigger images with those from clean images, preserving major features for indistinguishability. 

Invisible Backdoor Attack – DEBA

Extensive evaluations show that DEBA achieves high attack success rates while maintaining the perceptual quality of poisoned images.

Furthermore, DEBA demonstrates robustness in evading and resisting existing defense measures against such attacks on DNNs. 

The work highlights escalating threats of stealthy backdoor embeddings compromising the trustworthiness of deep learning models.

Deep neural networks (DNNs) receive backdoor attacks in the form of patches introduced by embedding as a starting point, with subsequent implementations becoming stealthy and invisible.

Document

Free Webinar : Mitigating Vulnerability & 0-day Threats

Alert Fatigue that helps no one as security teams need to triage 100s of vulnerabilities.:

  • The problem of vulnerability fatigue today
  • Difference between CVSS-specific vulnerability vs risk-based vulnerability
  • Evaluating vulnerabilities based on the business impact/risk
  • Automation to reduce alert fatigue and enhance security posture significantly

AcuRisQ, that helps you to quantify risk accurately:

A particular process evolves from visible backdoors into adversarial perturbations, label-consistent poisoning, edge-based dynamic triggers, and color shifts to make them look natural.

However, some previous attacks still leave visual traces that expose them as not completely invisible.

Besides this, recent research shows that backdoors can also be extended to face recognition systems used in real-world applications. 

Initially targeting inference errors, these have changed towards creating secret resiliently embeddable backdoor threats which are more dangerous for DNNs deployed across different domains due to their credibility reasons and security concerns.

Yet it remains difficult to devise countermeasures against such disguised poisoning attacks.

Continuing to evolve, the silent back-door attacks on deep neural networks (DNNs) have made further research into effective defenses.

Such efforts concentrate on protecting data inputs, models, and output detection.

Input defenses analyze saliency maps and artifacts for poisoning-suspected anomalies. Model defenses remove backdoors by pruning neurons, fine-tuning, or distilling models.

Output detection identifies infected models by measuring prediction randomness under input perturbations.

However, this race between attacking and defense continues with DEBA as one of the new attacks that can bypass existing defenses through invisible trigger embedding in the course of the training process.

Overview framework of SVD-based backdoor attack (Source – Arxiv)

Given the escalation of surreptitious model corruption and the need for DNNs to be used reliably and securely, evaluating robustness against the emergence of the latest defenses is quite important.

The proposed attack assumes the attacker can poison a portion of the training data without controlling the model architecture or training process.

During inference, attackers can only manipulate inputs. 

DEBA utilizes singular value decomposition (SVD) to decompose images into singular values and vectors capturing structural information.

By replacing the smallest singular values/vectors of clean images with those from trigger images, DEBA embeds imperceptible triggers, retaining the major features of clean images while injecting minor trigger details. 

This process enables generating poisoned images effective for targeted mispredictions during inference while appearing indistinguishable from benign samples. 

The attack is evaluated under the threat model of data poisoning during training but restricted test-time access, demonstrating high attack success and robustness against existing defenses through its covert trigger embedding approach. 

DEBA conducts this invisible trigger embedding in the UV color channels for enhanced efficiency and imperceptibility.

Comprehensive experiments demonstrate DEBA’s superior attack success rates and invisibility compared to prior attacks.

Stay updated on Cybersecurity news, Whitepapers, and Infographics. Follow us on LinkedIn & Twitter.

Tushar Subhra
Tushar Subhra
Tushar is a Cyber security content editor with a passion for creating captivating and informative content. With years of experience under his belt in Cyber Security, he is covering Cyber Security News, technology and other news.

Latest articles

QSC: Multi-Plugin Malware Framework Installs Backdoor on Windows

The QSC Loader service DLL named "loader.dll" leverages two distinct methods to obtain the...

Weaponized LDAP Exploit Deploys Information-Stealing Malware

Cybercriminals are exploiting the recent critical LDAP vulnerabilities (CVE-2024-49112 and CVE-2024-49113) by distributing fake...

New NonEuclid RAT Evades Antivirus and Encrypts Critical Files

A NonEuclid sophisticated C# Remote Access Trojan (RAT) designed for the.NET Framework 4.8 has...

Hackers Targeting Users Who Lodged Complaints On Government portal To Steal Credit Card Data

Fraudsters in the Middle East are exploiting a vulnerability in the government services portal....

API Security Webinar

72 Hours to Audit-Ready API Security

APIs present a unique challenge in this landscape, as risk assessment and mitigation are often hindered by incomplete API inventories and insufficient documentation.

Join Vivek Gopalan, VP of Products at Indusface, in this insightful webinar as he unveils a practical framework for discovering, assessing, and addressing open API vulnerabilities within just 72 hours.

Discussion points

API Discovery: Techniques to identify and map your public APIs comprehensively.
Vulnerability Scanning: Best practices for API vulnerability analysis and penetration testing.
Clean Reporting: Steps to generate a clean, audit-ready vulnerability report within 72 hours.

More like this

QSC: Multi-Plugin Malware Framework Installs Backdoor on Windows

The QSC Loader service DLL named "loader.dll" leverages two distinct methods to obtain the...

Weaponized LDAP Exploit Deploys Information-Stealing Malware

Cybercriminals are exploiting the recent critical LDAP vulnerabilities (CVE-2024-49112 and CVE-2024-49113) by distributing fake...

Researchers Reveal Exploitation Techniques of North Korean Kimsuky APT Group

Since 2013, the advanced persistent threat (APT) known as Kimsuky, which the North Korean...